IOWA STATE UNIVERSITY Digital Repository

[Retrospective Theses and Dissertations](https://lib.dr.iastate.edu/rtd) Iowa State University Capstones, Theses and **Dissertations**

1-1-1956

Flood potentiality of the Skunk River and Squaw Creek basins at their confluence below Ames, Iowa

Richard Marshall Wells Iowa State University

Follow this and additional works at: [https://lib.dr.iastate.edu/rtd](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F19293&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Wells, Richard Marshall, "Flood potentiality of the Skunk River and Squaw Creek basins at their confluence below Ames, Iowa" (1956). Retrospective Theses and Dissertations. 19293. [https://lib.dr.iastate.edu/rtd/19293](https://lib.dr.iastate.edu/rtd/19293?utm_source=lib.dr.iastate.edu%2Frtd%2F19293&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [digirep@iastate.edu.](mailto:digirep@iastate.edu)

FLOOD POTENTIALITY OF THE SKUNK RIVER AND SQUAW **CREEK BA.SINS** AT THEIR CONFLUENCE BELOW AMES, IOWA

by

Richard Marshall Wells

A Thesis Submitted to the **Graduate** Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE

Major Subject: Civil Engineering

Approved:

Signatures have been redacted for privacy

Iowa State College

TABLE OF CONTENTS

 \bar{z}

 \mathcal{L}^{max} and

 $\bar{\mathcal{A}}$

 $\ddot{}$

iii

LIST OF TABLES

Page

 ~ 400

 $\ddot{\cdot}$

 \sim

LIST OF ILLUSTRATIONS

,·

 \mathcal{A}

I. INTRODUCTION

A. Purpose and Objective

The Skunk River and its tributaries occupy a long narrow basin that lies wholly within the State of Iowa. Below the City of Ames, Iowa, Skunk River is joined by Squaw Creek, one of the major tributaries in the upper portion of this basin. The runoff from the *565* square miles of basin area above the confluence of the two streams can greatly influence the river flow for a considerable distance downstream. This is the **area** that will **be considered** in this thesis. A map showing the location of this area with respect to the entire Skunk River Basin is shown in Figure 1.

The Skunk River and its tributaries cause an estimated **average** annual flood damage of \$1,810,380 based on 1950 prices (1).. Damages to crops and pastures account for \$1,660,260 while the remaining \$150,120 is due to property damage. Thus, this is a basin that is accustomed to experiencing regular flood damage of sizable magnitude.

Flood damage varies with the area, depth, and duration of flooding. These.factors are in turn a function of the quantity of flow in the stream and of the duration of a flow capable of producing flooding for the given valley crosssection. The flood potentiality of a basin is thus determined by the maximum quantity of flow that the basin might

Figure 1. The Skunk River Rasin (1)

 \overline{c}

 $^\prime$

be expected to produce in the river at the point considered and the period of time which this flow would **exceed** flood stage.

In addition to the potential for causing floods below the Squaw Creek confluence, these two streams cause flooding in the area around the City of Ames. Of particular interest is the low flat area between the main section of Ames and **Iowa** State College. If the college **were** to expand in the future, this would be a probable area for expansion; however, this area is part of the Squaw Creek flood plain and is subject to inundation.

The most generally used and perhaps most logical method of determining the flood potentiality of a basin is that of transposing storms of record over the basin in such **a way** as to produce maximum rainfall over the basin. In doing this, all rules governing transposition of storms must be followed as will be outlined later in the paper. The objective of this thesis is to determine the flood potentiality of the Skunk River and Squaw Creek Basins at their confluence below Ames, Iowa by transposition of storms of record.

B. Record of Past Floods

Three gaging stations operated by the U.S. Geological Survey have been used to measure streamflow in the area considered (2). The first station was placed on Squaw Creek 1700 feet above the Chicago and Northwestern Railroad bridge

in Ames. Discharge records from this staff-gage station which operated from May 1919 to March 1925 are rated as good. From March 1925 to April 1927, the station was located at the Lincoln Highway bridge over Squaw Creek in Ames, two miles above the junction with the Skunk River. Readings at this location **were** taken with a chain gage and the discharge records are rated as fair. Since April 1927, a record of the flow in Squaw Creek has not been maintained.

The second gaging station ls on the Skunk River two and a half miles north of Ames and five miles north of its junction with Squaw Creek. This station, installed in July 1920, operated with a staff-gage until August 1921 and with a water stage recorder thereafter. Between August 1927 and March 1933 the station was not operated; but it has been in continuous operation since that time. In July 1934, a concrete control was installed at the site.

The third gaging station is located on the right bank of the Skunk River one quarter of a mile downstream from Squaw Creek and about fifteen feet downstream from a highway bridge. This station, which was established in October, *1952,* uses a water stage recorder and a concrete control. The period of record is too short to be of much use in this study.

Streamflows necessary to produce damaging floods in the two flood plains above their . junction and in the flood plain below the junction have been determined (1) . Damage occurs .• in the Skunk River flood plain above the junction, when the

 $\frac{1}{2}$

flow is greater than 3490 cfs. Danage occurs in the Squaw Creek flood plain, when the flow is greater than 3μ 00 cfs. The Skunk River channel capacity below the mouth of Squaw Creek is only 2400 cfs. Greater flows cause some inundation of unprotected **areas.**

Tables 1 and 2 show all flood flows recorded at the first two gaging stations. All flows greater than 2μ 00 cfs are recorded since they are of sufficient magnitude to produce flooding in the **area** below the intersection.

Table 1. Damaging floods on the Squaw Creek at Ames, Iowa, 1919 to 1927 (2)

		Maximum mean daily		discharge	Maximum observed	Maximum observed
Year	Flood period	discharge cf _s	Date	cfs	cfs per sq ft	stage ft
1918				$6/\frac{1}{4}$ 6,900	32.9	14.5
1922	7/17	3,220		$7/17$ 3,920 18.7		10.4

During the spring and summer of 1954 , record streamflow occurred in the **area** considered. Table 2 shows that the maximum flow on the Skunk River was $8,630$ cfs. As would be **expected,** this flow caused the river to overtop its banks both **above** and below Ames.

Flooding of **the Squaw Creek** in the Ames **area** also occurred in May and August of 1954. The heaviest flooding occurred during the period of 26 August to 28 August. Areas in Ames that were flooded during this period included Brook-

 \mathfrak{s}

高山

		Maximum mean daily		Maximum observed discharge	Maximum observed	
<u>Year</u>	Flood period	discharge $_{\texttt{cfs}}$	Date cfs		cfs per sq mi	stage ft
1921	9/17	2,910	$9/17$ 3,540		11.1	9.20
1943	7/31	2,490	$7/31 \; 4,500$		14.0	10.33
1944	$\frac{5}{19}$ - 5/20	5,650	5/20 8,060		25.0	13.90
1945	6/2	3,070	$6/2$ 4,010		12.4	9.71
1947	6/13	5,450	6/13, 5,900		18.3	11.95
1947	6/23	4,350	6/23.4.920		15.3	•.•
1949	$3/\frac{1}{4}$	1,700	$3/4$ 2,700		8.1	10.52#
1951	3/29	4,600	3/29 5,320		16.5	10.90
1951	6/2	4,360	6/2	4,920	15.3	10.35
1954	6/1	2,380	6/1	3,180	9.9	7.81
1954	$6/10-$ 6/11	5,760	6/10 8,630		26.8	13.66
1954	7/27	2,120	7/27 3,520		10.9	8.27

Table 2. Damaging floods on the Skunk River at Ames, Iowa, 1920-1927, 1933-present (2)

*Stage discharge relation affected by **iceo**

side Park and the area around South Maple Street. Some overtopping of the stream banks occurred in the area between the City of Ames and Iowa State College. Although the flow was not measured in Squaw Creek at this time, a rough estimate of the magnitude of the flow can be made from readings taken on the Skunk River gages. The gage above Ames recorded a

peak of 3,520 cfs at 6:30 P.M. on 27 August while the gage below Ames recorded a peak of 8.700 cfs at 2:30 A.M. on 28 August. These readings would indicate that the flow from Squaw Creek contributing to the gage reading below Ames was between 5,000 and 6,000 cfs. Although this estimate is not accurate, it does give a reasonable basis for future comparisons.

C. Storms Considered

Storms that are useful in determining the flood potentiality of a river basin of this **size** must have certain characteristics. The transposition of the storm must be feasible. In other words, the area over which the storm occurred and the area to which the storm is to **be** transposed must be meteorologically homogenious. A storm caused by moist air rising over the Cascade Mountains in the Pacific Northwest would have little significance transposed over Iowa. The Hydrometeorological Section of the U.S. Weather Bureau sets limits of transposition for various major storms of record and will calculate estimates of the percent of the original precipitation that would have occurred in the new location. This will be discussed further in a later section of the thesis.

The storm must be one that will produce unusually heavy precipitation over the area considered. As the area of a basin increases, the **average** precipitation over the **entire**

area decreases. The 565 square mile area used in this study represents a comparatively small basin, so relatively high values of average storm precipitation could be expected. The storm should also have a high average intensity. A storm that spreads ten inches of rainfall over five days would produce less flooding than one in which ten inches of rainfall fell in one day. During the longer duration, the channel would carry away some of the runoff before the later precipitation arrived.

With these factors in mind, five storms were chosen for transposition over the basin (3) . These storms are desig**nated** as Storms MR 4-24, UMV 1-22, UMV 2-5, MR 7-2B, and MR $6-15$. These designations are those used by the U.S. Army Corps of Engineers. MR storms occurred over the Missouri River Valley. UMV storms occurred over the Upper Mississippi Valley.

The first storm, MR μ -2 μ , occurred in September, 1926 with **centers** near Boyden and Maurice, Iowa. Figure 2a shows - the **area** of this storm inclosed by the four-inch isohyet. This storm had a effective duration of twenty-four hours, lasting from eight o'clock in the morning on 17 September until eight o'clock in the morning on 18 September. Transposed over the Skunk River and Squaw Creek Basins, this storm produced an average total rainfall of 13.9 inches.

The second storm, UMV 1-22, occurred in August, 1941 with centers at Haywood and Moose Lake, Wisconsin. Figure 2b

Rainfall maps of Storms π 4-24, UNV 1-22, UNV 2-5, UN 2-5, Pigure 2.

shows the area inclosed by the two-inch isohyet of this storm. Precipitation continued for seventy-eight hours. More than half of the rainfall, however, occurred in a twelve hour period from six o'clock in the afternoon on 29 August to six o'clock in the morning on 30 August. The total storm period. was from six o'clock in the morning on 28 August to 12 o'clock noon on 31 August. This storm, when transposed, produced an average total rainfall of 13.6 inches over the basin.

The third storm, UMV *2-5,* occurred in June, 1905 with a center near Bonapart, Iowa. Figure 2c shows the area inclosed by the two-inch isohyet of this storm. The storm lasted twelve hours from eight o'clock in the evening on 9 June to eight o'clock in the morning on 10 June. When transposed, it produced an average total rainfall of 9.9 inches over the basin.

The fourth storm, MR 7-2B, occurred with a center near Collinsville, Illinois in August, 1946. The storm had a thirty-six hour duration, lasting from nine o'clock in the evening on 14 August to nine o'clock in the morning on 16 August. The boundary of the storm as marked by the threeinch isohyet is shown in Figure 2d. This storm, when transposed, yielded an average total rainfall of 11.9 inches over the basin.

The last storm, MR 6-15, occurred in June, 1944 with a center near Stanton, Nebraska. Figure 2e shows the area covered by this storm inclosed within the three-inch isohyet.

Effective rainfall lasted twelve hours from six o'clock in the evening on 10 June until six o'clock in the morning on 11 June. After transposition, this storm produced an average total rainfall of 9.5 inches over the basin.

Many people living in the Skunk River Basin in Iowa are familiar with the Floyd River Storm of 8 June, 1953. This storm caused heavy flooding in much of northwestern Iowa. Damages were estimated to be nearly *\$50,000,000* (4). The damages **were heavy** due to the fact that the storm was well oriented over the Floyd River Basin and was of heavy intensity. The storm lasted sixteen hours from six o'clock in the morning until ten o'clock at night. Figure 3 shows the total storm isohyetal map of this storm transposed over the Skunk River and Squaw Creek Basins. This transposition yields a total average rainfall over the basin of only 7.9 inches. This is less than that of any of the five storms considered.

Transposition of the Floyd River Storm of 1953 over the Skunk River Basin above the Squaw Creek junction Figure 3.

II. CHARACTERISTICS OF THE SKUNK RIVER BASIN

A. General

The Skunk River lies in a relatively long, narrow basin that **extends** from north-central to southeastern Iowao **The** basin has an area of μ , 325 square miles and is composed of parts of twenty counties in the State of Iowa (1) . The basin is approximately 180 miles long, has an average width of 2μ miles, and a maximum width of about μ 0 miles. A map of the basin is shown in Figure 1. The basin lies **between** the watersheds of the Des Moines River to the southwest and the Iowa River to the northeast.

The source of the Skunk River is in northern Hamilton County, Iowa. From here the river flows approximately 264 miles south and southeast to a point about nine miles below Burlington, Iowa where it discharges into the Mississippi River. The river's total fall from its source to the Mississippi River is about 680 feet. Average stream slopes for the various reaches of the Skunk River are given in Table 3. At low water stage in the Skunk River, water from the Mississippi River backs up the Skunk River about 6.4 miles. The river profile is shown in Figure μ .

The major tributaries of the Skunk River are Big Creek, Cedar Creek, Crooked Creek, North Skunk River, Indian Creek, and Squaw Creek. The drainage areas of the Skunk River and

Figure l_+ . Profile of the Skunk River water surface at low
water stage (1)

Table 3. Stream slopes in the Skunk River (1)

*Distance given in miles above mouth.

its tributaries are shown in Table μ . Cross-sectional dimensions and channel flow capacities at several points within the Skunk River Basin are given in Table *5.* The bankful flow was selected as the flow that occurs when the water surface level reaches the adjacent bottom land elevation.

The Skunk River and Squaw Creek Basins above their confluence are shown in Figure *5.* This section of the Skunk River Basin has an area of 333 square miles while the Squaw Creek Basin has an,area of 232 square miles. Both basins are about three times as long as they are wide. Their combined areas are roughly pear shaped with a maximum length of 38

Figure 5. The Skunk River and Squaw Creek Basins above their junction

179.5 Below jct. Indian Creek Indian Creek 421 1,231

213 .3 Below jct. Squaw Creek Squaw Creek 232 565

219.0 u.s.G.s. gage, **Ames** - - - ³²²

 $216.9*$ U.S.G.S. gage, Ames Squaw Creek 210

Table μ . Drainage areas of Skunk River and tributaries (1)

*Gages located on tributaries.

miles and a maximum width of 25 miles. The two basins have a good drainage net that is both natural and man made. With this favorable shape and drainage net "flashy" runoff hydrographs with quick, high peaks would be expected and do occur. Two small areas where the drainage flows into large depressions have been excluded from the basin drainage area since they do not contribute to surface runoff.

Cross section location	Miles above mouth	Bankful flow (cfs)	Cross-sectional area at bankful (sqft) flow.	Stream width Mean at bankful (f _t) flow.	depth, $\left(\texttt{ft} \right)$
Augusta	12.2	17,000	4,610	և27	10.8
Oskaloosa	138.6	6,500	3,340	297	11.2
Polk Co.	195.8	4,000	1,480	180	8.2
Story Co.	206.8	2,400	960	143	6.7

Table *5.* Cross-sectional dimensions and channel flow capacities (1)

B. Topography

From its source the Skunk River flows south in a narrow postglacial valley to a point a few miles north of Ames. Although bluffs rise *75* to 100 feet above the river bed, in the lower five miles of this valley, the remainder of the valley is shallow. The river then enters a preglacial channel which widens below Ames and remains wide through Story, Polk, Jasper, and Marion Counties. From near Ames to Mahaska County, the river which formerly meandered in this reach flows through an artificially straightened channel. This improvement was undertaken piecemeal by local drainage districts. In much of the straightened reach, the stream has reestablished a meandering course within the bed of the channel by undercutting banks and depositing bars. In Keokuk, Washington, Jefferson, and Henry Counties the **river** meanders through a narrow valley and near Rome enters a

narrow, steep-walled, postglacial valley. This valley continues to a point a few miles below Augusta where it widens and then merges with the flood plain of the Mississippi **River.**

In the upper third of the basin, the topography **is** gently rolling with shallow valleys except **where** streams cross morainal features. The natural drainage in this area is poor, but runoff is accelerated by artificial drainage. In the lower two-thirds of the basin, the topography is mature, characterized by gently sloping, interstream areas and steep slopes near the watercourses. Relatively **wide** flood plains have developed in the preglacial valleys; whereas, the postglaclal valleys are narrow and sometimes rock-floored. The flood plain is widest and flood damages are generally greatest in the reach between Ames and the mouth of Indian Creek.

Squaw Creek flows in a southeastly direction from its source in southwestern Hamilton County until it joins the Skunk River below Ames. The upper valley is narrow and shallow. In Story County the valley becomes somewhat **deeper** and **wider.**

C. Geology

Bedrock beneath most of the Skunk River Basin is of the Des Moines series of the Pennsylvanian system which is chiefly shale but which contains some sandstones, limestones, and

coal. Limestones of the Mississippian system outcrop along the valley walls *or* the Skunk River about Ames, as well as at many places downstream.

Materials **were** deposited on the basin during three glacial **stages.** Most of the basin is covered by Kansan drift, which in the lower part of the basin is covered by the Illinoisan glacial deposits. The upper third of the basin is covered by Cary and Mankato deposits. The Cary and Mankato are substages of the youngest glacial stage, the Wisconsin. The Kansan and Illinoisan drift is covered by a blanket of loess.

Deposits from the Cary and Mankato cover both the Skunk River and Squaw Creek Basins above the confluence of the two waterways. In the uplands of this area, the thickness of the Wisconsin and Kansan till varies considerably, reaching a hundred feet or more. These tills consist of stiff, heavy clay mixed with pebbles and boulders and with occasional lenses of sand. Borings in the postglacial valley of the Skunk River above Ames reveal a few feet of silt, about 30 feet of sand and gravel, and then Mississippian limestone (1). The Squaw Creek Valley is superimposed upon a pre-Wisconsin valley. Borings in this valley floor reveal a thin layer of silt, about μ 0 feet of sand, about 60 feet of what is apparently Kansan glacial till, and then another layer of sand. No rock outcrops occur in this valley.

D. Climatology

Table 6 shows precipitation data for Ames, Iowa. The published monthly precipitation records for five stations in the area indicate that about 71 percent of the precipitation occurs from April to September, 18 percent during October, November, and March and 11 percent during December through February. The records show that the record flow in the Skunk River of 8630 cfs was caused by an **average** rainfall of 2.98 inches over the Skunk River Basin during a twenty-four hour period.

Table 6. Precipitation in inches for Ames, Iowa 1876-1954 *(5)*

Average	Maximum		Maximum 2 year		Maximum vear		Maximum year	
annual	Depth Year		Depth Year		Depth Year		Depth Year	
31.1	51.9	1881	90.7	1943 to 1944	124.3 1943	to 1945	199.2 1940	to 19山

United States **Weather** Bureau records of average annual snowfall for seven stations in or near the Skunk River Basin show an average annual. depth of snowfall over the basin of about 26 inches. Table 7 lists temperature data for Ames, Iowa.

 $\ddot{}$

Table 7. Temperatures in degrees Fahrenheit at
Ames, Iowa (5)

III. PROCEDURE

A. General

Determining flood potentiality of one of more basins involves many considerations and the handling of several problems. Hydrologists have in some cases developed different methods of coping with the same problem. The procedure used by this paper is outlined in general terms in this section and will be developed, step by step, in proceeding sections. Storms MR 4-24, UMV 1-22, UMV 2-5, MR 7-2B. and MR 6-15 were each treated in similiar manner.

The first step was the development of unit hydrographs for the Squaw **Creek** Basin and for the Skunk River Basin above the junction of the two streams. The unit hydrograph has **been** defined by Sherman as: "the hydrograph of surface runoff (not including groundwater runoff) on a given basin, due to an effective rain falling for a unit of timeⁿ (6-p308). In this study, effective rain was assumed to be a rainfall sufficient to produce one inch of rainfall excess or surface runoff over the entire basin. The unit of time was assumed to be six hours.

The second step was the development of a groundwater hydrograph for each of the two basins. Water below the water table in the soil is called groundwater (6) . This groundwater acts as a vast sub-surface reservoir from which

streams, lakes, and swamps are fed between rainstorms when no surface runoff is available (7) . A groundwater hydrograph of a basin is a graphical plot of stream discharge derived from groundwater sources as ordinate and time intervals as abscissa.

The next step was the transposition of each storm in turn to a position over the two basins to produce maximum average rainfall on the basins. Total-storm isohyetal naps, which are maps of the original storms showing contours of equal precipitation, were used for making the transposition (8). The total-storm isohyetal map overlays **were** rotated over a map of the two basins to a position of maximum average precipitation. The United States Weather Bureau has determined that the major axis of **a** storm may be rotated up to twenty degrees in either direction. The geographic limits of the area over which a certain storm could have occurred and the amount of precipitation that would fall in a new storm location are affected by many conditions. The possibility of these storms occurring over the Squaw Creek and Skunk River Basins and the percentage of original rainfall that would fall in the new location had to be determined.

The fourth step was the determination of the average precipitation that would fall on each of the two basins in six-hour increments for the total length of the storm. This was accomplished by placing a series of six-hour isohyetal

 $2_µ$

maps over the two basins in the position determined previously using the total-storm isohyetal map. Average precipitation over the basin for each six-hour period was then determined using the isohyetal method. In cases where precipitation was too light for this method to be used accurately, the Thiessen method was employed. This latter method gives equal weight to the areal distribution of the various precipitation recording stations (8) . Each of these average precipitation values **were** modified using figures obtained from the U.S. Weather Bureau to account for the increase or decrease in rainfall due to the transposition.

The next step was the determination of the amount of runoff from each basin during each time period using the average precipitation values found above. Runoff, in this case, was the total runoff minus the groundwater flow. The portion of the precipitation that reaches the stream as runoff was calculated using a graph of rainfall-runoff relations developed for this region.

As a last step, streamflow hydrographs observed at the junction of the two streams were developed. Unit graph ordinates **were** multiplied by the previously determined values of rainfall excess for each period. This produced a series of hydrographs representing runoff from a six-hour increment of rainfall. These hydrographs were staggered with respect to time and sumned along with the groundwater hydrograph to produce a total hydrograph for each stream. The

ordinates of the two separate stream hydrographs were added to produce a total hydrograph of flow at the stream junction.

B. Development of Unit Hydrographs

In studies of this type, the unit hydrograph is **the** basic tool of the engineer. The unit hydrographs developed for the Skunk River and Squaw Creek Basins are hydrographs of surface runoff caused by a rainfall excess of one inch over the respective basin during a six-hour period of precipitation. There are several methods of developing unit hydrographs for small basins of this type. The best method is to use available precipitation and runoff data of the basin to derive the hydrograph directly. This is the method that was used in this paper. Other methods which could have **been** used include transferring a unit graph from a similiar basin and deriving a synthetic graph by mathematical means.

In developing unit hydrographs for the basins, actual hydrographs resulting from storms were obtained where possible. Where such records were not readily available, hydrographs were developed from published values of mean daily flow (1).

The groundwater flow was then separated from the total flow under the hydrograph. Since this is a difficult quantity to estimate, many arbitrary methods of separation have **been** developed (8). Most are satisfactory when used consistently throughout the study. One of the better methods involves the development of a groundwater recession curve

'

which is fitted to the recession limb of the observed hydrograph. This recession curve is extended back to **a** point under the second point of inflection of the observed hydro**graph.** From here a straight line is drawn to the point where the hydrograph first begins to **rise** as a result of the rainfall.

The area under the hydrograph after the groundwater flow was excluded was next calculated. This area represents the volume of runoff derived from three sources. These are channel precipitation, surface runoff, and interflow. Interflow is water that travels in the zone beneath the surface of the earth and above the water table during some period in its movement to the stream. The volume of runoff was next converted to inches of runoff over the basin. Runoff ordinates of the hydrograph were divided by this figure to produce a hydrograph resulting from one inch of runoff over the entire basin.

Precipitation records were examined to determine **the** duration of rainfall that each graph represented. Unit hydrographs representing like durations of rainfall were averaged to provide the best unit graph. If no storms of the duration desired **were** recorded, a unit hydrograph for another duration could **be derived** and converted to **the** proper duration using an S-curve hydrograph (9). For example, to convert a twelve-hour unit hydrograph to a six-hour unit hydrograph, a series of twelve-hour unit hydrographs spaced

twelve hours apart are added to form an S-curve. An S-curve will rise to a point where inflow equals discharge and the curve becomes horizontal. Ordinates of two twelve-hour S-curves would then be lagged six hours and subtracted. The new ordinates are those of a hydrograph caused by one half of an inch of rainfall excess in six hours. Multiplying these ordinates by two produces the desired six-hour unit hydrograph.

The derived unit hydrograph was then used to reproduce the hydrographs resulting from past storms. Discrepancies in the unit hydrograph indicated by comparing the observed and reproduced hydrographs were then adjusted.

Six-hour unit hydrographs were developed for both basins at their respective gages (1) . Figure 6 shows the observed hydrograph of the flood of 19 to 20 May 1944 at the Skunk River gage and the hydrograph reproduced using the unit hydrograph. The Squaw Creek unit hydrograph was used to reproduce the hydrograph observed during the storm of July 17, 1922 as shown in Figure 7.

To obtain unit hydrographs for each stream at the junction, the ordinates of each unit hydrograph at the gage had to be routed downstream and increased to allow for the increased drainage area. The ordinates of each graph were multiplied, therefore, by a ratio of the basin area above the stream junction to the basin area above the gage. Since the increase in area is not large, the results are within desired accuracy. Figure 8 shows the unit hydrographs at

Figure 6. Comparison of the calculated and observed hydro-
graphs for the 19 to 20 May 1944 flood at the Skunk River **gage** above Ames. **Iowa** (1)

Comparison of the calculated and observed hydro-
graphs for the 17 July 1922 flood on Squaw Creek
at the gage at Ames, Iowa (1) Figure 7.

Figure 8. Comparison of the Skunk River and Squaw Creek unit hydrographs

the gages and at the junction. The ordinates of the unit hydrographs at the junction are shown in two-hour increments in Tables 8 and 9.

C. Development of a Groundwater Hydrograph

That **water** flowing in the soil below the water table that emerges as streamflow is known as groundwater flow or base flow. Precipitation infiltrating through the soil to the water table can cause the water table level to rise considerably. An **increase** in the water table level·eventually causes an increase in groundwater flow although the two do not vary directly. In developing a groundwater hydrograph, the shape of the rising limb and the location of the peak groundwater flow are largely indeterminate (8). It follows tbat any assumptions made regarding the groundwater hydrographs are arbitrary; however, the relative magnitude of this portion of the total flow is small enough that it should not introduce serious error in the runoff computations.

A groundwater flow of one cubic foot per second per square mile of basin area was assumed in each basin at the beginning of each storm. The flow was then assumed to rise at an increasing rate to a peak of two cubic feet per second per square mile at the end of $\frac{1}{2}$ hours where it then remained constant. An examination of streamflow records for **these** streams during the months of May through September revealed

 $\hat{\mathcal{A}}$

Skunk River unit hydrograph ordinates in cfs
at the junction with Squaw Creek Table 8.

period	Two hour Hydrograph Two hour Hydrograph Two hour Hydrograph ordinates	period	ordinates	period	ordinates
0123	\circ 30 176 537	323345	682 625 576 529	645 666 67	<u>36</u>
4567	1173 2160 3139 3900	36 338 39	486 146 411 377	68 69 70 71	33 33 30 27
3901011	4310 4500 4390 4080	40 442 43	346 318 292 268	72 73 74 75	23 21 19 17
12 13 14 15	3755 3442 3160 2900	44 45 46 47	247 228 209 191	76 778 79	17 17 17 17
16 17 18 19	2681 2441 2243 2060	48 490 51	176 162 149 137	80 882 83	17 14 11 8
20 21 22 23	1890 1735 1592 1463	555455	126 $\frac{113}{106}$ 97	845 888 87	7666
2455 2256 27	1343 1225 1133 1041	55789	983 836 751	88 89 90 91	6666
28 29 30 31	956 880 $\frac{807}{742}$	601 662 63	641552	9234595	6420

Squaw Creek unit hydrograph ordinates in cfs
at the junction with Skunk River Table 9.

that an assumption of a base flow of one cubic foot per second per square mile prior to a stream rise was reasonable.

D. Transposition of Storms

Transposition of a storm from one area to another generally involves three considerations. The first entails determining whether the new area is within the areal limits in which the storm may be transposed. The second entails determining whether any change in the shape or orientation of the isohyetal pattern of the storm is permissible (8). Finally, the change in the magnitude of the storm that the transposition might cause is determined.

The limits of transposition of a storm are generally determined by an investigation of the type of storm involved. The five storms considered in this thesis belong to the class of wave-type cyclones that occur in the north-central United States below the Great Lakes (10) . Due to a decrease in the air-mass temperature contrast with movement of the storm to the south, a general limit for occurrence of storms *of* this type is set at the southern borders of Kansas and Missouri. The area of occurrence is further bordered to the west by the Rocky Mountains, to the east by the Appalachian Mountains, and to the north by the Great Lakes. The U.S. Weather Bureau has verified the fact that these storms could have occurred over the Skunk River Basin (1).

A change in the shape or orientation of a storm pattern

could greatly affect the total amount of precipitation falling on a basin. All storms were transposed, however, without altering their original shape. Rotation of the major axes of **the** storm patterns was limited to a twenty degree maximum in either direction. This follows a general rule set by the Weather Bureau.

Transposition of a storm can change the probable amount of precipitation caused by the storm. If the dynamic features of the storm are assumed to be unchanged, then the change would be mainly due to a difference in available moisture in the two localities (8). The Weather Bureau has developed charts from which the amount of precipitable water available in each locality can be estimated using representative sur**face** dewpoints as a parameter. Altitude is used as another parameter in these charts since a difference in altitude affects atmospheric pressure. These factors were taken into account in calculating the relative magnitude of precipitation from each storm over the basins considered (1). The relative magnitude of each storm is expressed below as a percentage of the original:

Each of the five storms was transposed in turn to a

36

ţ.

position over the two basins. This position was chosen by rotating an isohyetal. overlay of the total precipitation in eaeh storm over a map of the two basins to a position of maximum precipitation over the total area. Figures 9 through 13 show the five storms superimposed upon the two basins. The number of **degrees** that each storm axis was rotated are indicated below:

E. Determination of Average Rainfall

Average rainfall over the basins was determined using two methods. The isohyetal method was used in all cases except where the rainfall was very light. In this case, the Thiessen method was used. Precipitation amounts **were** determined for six-hour periods of rainfall for use with the unit hydrographs. The positions of the isohyetal and Thiessen short-period storm patterns were fixed by the position of the total-storm transposition.

Isohyets in an isohyetal pattern act as contours of equal precipitation. The is ohyet pattern is derived by interpolation between points of known precipitation. Any recording type of precipitation station will show how the

Figure 9. Transposition of Storm Nm 4-24 over the Skunk River Basin above the Squaw Creek junction

Figure 10. Transposition of Storm UMV 1-22 over the Skunk
River Basin above the Squaw Creek junction

Figure 11. Transposition of Storm UMV 2-5 over the Skunk
River Basin above the Squaw Creek junction

Figure 12. Transposition of Storm MR 7-2B over the Skunk River Basin above the Squaw Creek junction

Figure 13. Transposition of Storm MR 6-15 over the Skunk River Basin above the Squaw **Creek** junction

precipitation varied with time. Data from all non-recording sources is broken down into incremental periods by comparing it with data from nearby recording stations.

Six-hour isohyetal maps **were** obtained for the **five** storms discussed in this thesis (1) . Each isohyetal map was converted to the same scale as that of a map of the two basins. Each six-hour isohyetal map was positioned over the two basins in the same position determined with the total-storm isohyetal map described in the previous section. Figure 1μ shows the second six-hour period of Storm MR 6-15 placed over the two basins in the position determined by the total-storm map in Figure 13.

Each of the short-period isohyetal maps was used to determine a value of average rainfall for that period. Table 10 shows an example of the determination of average rainfall over the Skunk River Basin using the same period \cdot that was illustrated in Figure 1μ . Individual areas enclosed between ischyets were considered in turn. A planimeter was used to determine areas between isohyets. Column 1 of the table shows the values of the enclosing isohyets, and Column 2 shows the intial average planimeter reading for each **area.** The Skunk River Basin area is equivalent to 81.0 planimeter units so Column 3 represents the initial planimeter readings adjusted such that their total will equal 81.0 units. The error in planimetering was divided according to area. Column $\frac{1}{4}$ lists the enclosed area in •

Transposition of the second period of Storm MR 6-15 over the Skunk River Basin above the Squaw Creek junction Figure 14.

Table 10. Sample determination of average rainfall over the Skunk River Basin using the second period of Storm MR 6-15

square miles, using the relation that one planimeter unit equals μ .12 square miles.

With reasonably parallel isohyets, an arithmetic average of the two values was used to represent the average precipitation over the area between isohyets. Circular and other irregular isohyetal patterns required that this procedure be varied to give a more realistic value. Column 5 of Table 10 lists the values of average rainfall used for the respective areas. The depth-area product of Colums μ and 5 is shown in Column 6. When the total of Column $6, 2,741.6$

inch-square miles, is divided by the total 333 square-mile area, an average rainfall value over the basin of 8.23 inches is obtained. Other average rainfall values **were** determined in a similiar manner.

During periods of very light precipitation, points of precipitation records **were** transposed instead of isohyetal patterns. Perpendicular bisectors of lines between these points were joined to form a Thiessen pattern. Figure 15 illustrates a Thiessen pattern that was used for the second period of rainfall during Storm UMV 1-22. Average precipitation equal to the station record was assumed to occur over the area enclosed around each station by the perpendicular bisectors. Here again., depth-area values were calculated, summed, and divided by the total basin area to provide a value of average precipitation over the basin.

F. Rainfall-Runoff Relationships

The volume of runoff from a basin produced by a rainfall of given magnitude is affected by many variables. Satisfaction of interception, depression storage, and soil moisture demands of the basin uses up much of the early rainfall and some of the later rainfall. Since each of these sources of loss is affected by many factors, a direct scientific determination of the amount of runoff from a basin of this **size** is impossible at this time. For this reason many empirical methods of estimating runoff have been devised. The best

Thiessen pattern used with the second six-hour
period of Storm UMV 1-22 Figure 15.

method to use for a certain basin depends on the records available for that basin.

In the humid and subhumid basins of this country, streamflow prior to a storm has been found to be a good index to the moisture deficiency of the basin (8) . Assuming that runoff from previous ratns has been discharged, this streamflow would result from groundwater flow entirely. A graph of rainfall-runoff relations that uses initial groundwater flow as a parameter has **been** developed for the Iowa River Basin (11). This basin borders the Skunk River Basin on its northeast side. Due to the similarity and proximity of the two basins this graph was considered suitable for **use** in this study. No other relationship between rainfall and runoff for the basins under study was available or easily determinable for use in this study. The relationship used in the study is shown in Figure 16. Use of this graph is limited to the months of April through October since freezing temperatures alter any relation between precipitation and runoff during other periods.

In a previous section the groundwater flow at the start of each of the transposed storms was assumed to be one cubic foot per second per square mile. This groundwater flow was used as the index flow in the graph in Figure 16. The graph was used by entering on the left hand side with a value of average rainfall. By reading down from the point where this value intersected the groundwater parameter, a

 1.8

Rainfall-runoff relationship
graph (11) Figure 16.

value of rainfall loss was obtained. This graph was used to determine rainfall loss resulting from the first seven inches of rainfall. After seven inches of rain had fallen, ninety percent of all additional rainfall was asswned to reach the stream as runoff.

Tables 11 and 12 illustrate the method of determining runoff from the two basins for each six-hour period of the five storms. The slx-hour periods of each storm were **numbered** numerically beginning with the first period. These numbers are shown in the first column of each table. The second column lists the values of average six-hour rainfall that **were** determined by the method described in the preceding section of this thesis. The actual average rainfall values in Column 2 were adjusted to the values listed in Column 3 by multiplying the actual rainfall by the percentage increase or decrease in rainfall to be expected in **the** transposed location. The percentages used for each storm are listed on **page** 36. For example, values in the second column for Storm MR 4-24 were multiplied by 1.04 to give the values in the third column. The adjusted values are totaled cumulatively in the fourth column.

Values from Column μ were used to enter the graph on Figure 16 to obtain values of total loss. The total loss figures were entered in Column 5 of each table. The values in Column *5* were subtracted from the values in Column μ to give values of total runoff recorded in the

 \mathbf{x}_k

Table 11. Calculation of runoff from the Skunk River Basin

 \sim \sim

6-hour period (1)	Average 6-hour rain, in. <u>(2)</u>	Adjusted average rain, in. $\{3\}$	Total rain, in. $(\frac{1}{2})$	Total loss, in. (5)	Total runoff, in. (6)	Incre- mental runoff, in. (7)
			Storm MR μ -2 μ			
1234	1.49 10.01 3.28 0.10	1.55 10.41 3.41 0.10	1.55 11.96 15.37 15.47	$\cdot 65$ 2.28 2.62 2.63	.90 9.68 12.75 12.84	.90 8.78 3.07 .09
			Storm UMV 1-22			
12345	0.000 0.045 0.344 0.012 0.000	0.000 0.054 0.409 0.014 0.000	0.000 0.054 0.463 0.477 0.477	0.000 0.054 0.250 0.252 0.252	0.000 0.000 0.213 0.225 0.225	0.00 0.00 0.21 0.01 0.00
6 \vec{b} $\frac{9}{10}$	0.531 6.020 2.350 0.033 0.975	0.631 7.160 2.795 0.039 1.160	1.108 8,268 11.063 11.102 12.262	0.510 1.900 2.180 2.180 2.300	0.598 6.368 8.883 8.922 9.962	0.37 5.77 2.52 0.04 1.04
11 12 13	1.020 0.51 0.014	1.213 0.607 0.017	13.475 14.082 14.099	2.420 2.490 2.490	11.055 11.592 11.609	1.09 0.54 0.02
			Storm UMV 2-5			
$\frac{1}{2}$	8.50 2.02	8.16 1.94	8.16 10.10	1.90 2.09	6.26 8.01	6,26 1.75
			Storm MR 7-2B			
123456	$\frac{1}{1}$. 43 1.67 0.00 2,00 5.10 2.58	3.94 1.49 0.00 0.72 1.78 4.54 2.30	3.94 5.43 5.43 7.21 7.75 14.05	1.23 1.52 1.52 1.80 2.25 2.48	2.71 3.91 3.91 5.41 9.50 11.57	2.71 1.20 0.00 1.50 4.09 2.07
			Storm MR 6-15			
$\frac{1}{2}$	1.34 9.00	1.35 9.09	1.35 10.44	0.59 2.12	0.76 8.32	0.76 7.56

Table 12. Calculation of runoff from the Squaw Creek Basin

sixth column of each table. The total runoff in Column 6 was broken down into incremental values for each six-hour period. Six-hour incremental values of runoff **are** shown in the last column of each table.

G. Development of Total Hydrographs

The final **step** in a study of this type involves the **de**velopment of hydrographs of runoff from each storm considered. All of the information that has been developed in previous sections of the paper was used to produce flood hydrographs for both streams. The ordinates of the two hydrographs were then added to produce a total flood hydrograph.

In the preceding section, six-hour runoff values **were** developed for each basin. These values were used with the basin unit hydrographs and basin groundwater hydrographs to produce stream hydrographs at the junction of the two streams. Table 13 illustrates the development of a hydrograph for the Skunk River from the runoff values calculated for Storm MR 7-2B.

Values of the ordinates of the Skunk River unit hydrograph were broken down into two-hour periods in Table 8. **These** unit hydrograph values were used in the development of all Skunk River hydrographs. Colwnn 1 of Table 13 divides the streamflow into two-hour periods for the total length of the rise to facilitate use of the unit hydrograph.

The ordinates of the unit hydrograph are those of a

.53

hydrograph of one inch of runoff over the basin. It was determined in Table 11 that from the first six nours of Storm MR $7-2B$, 2.47 inches of runoff occurred. To get streamflow ordinates for this period of runoff, the unit hydrograph ordinates were multiplied by 2.47. These values were entered in Column 2 of Table 13.

It was determined that during the following six-hour periods of the storm 1.39 inches, O.O inches, 0.83 inches, 2.02 inches, and 1.52 inches of runoff occurred. Streamflow ordinates for each of these increment of runoff were calculated and entered in turn in Columns 3 through 6 of the table. The ordinates from each runoff period were staggered by three, two-hour periods or six hours to allow for the difference in time of occurrence. The zero inches of runoff in the third period caused no streamflow so that column was omitted.

A groundwater hydrograph was assumed earlier in the paper. The ordinates of that hydrograph were entered in Column 7 of Table 13. Columns 2 through 7 were totaled across to give the ordinates of the total flood hydrograph. These figures were entered in Column 8. Figure 17 illustrates this procedure graphically. In this figure, the groundwater hydrograph, the five six-hour hydrographs, and the total stream hydrograph are plotted.

The procedure outlined above was used to derive stream hydrographs for both basins for all five storms. For each

Table 13. Development of the Skunk River hydrograph ordinates in cfs for Storm MR 7-2B

2 hr per $\overline{\text{11}}$	Period one (2)	Period two (3)	Period four (l_{\perp})	Period five <u>(5)</u>	Period s1x (6)	Base r_{low} (7)	Total flow (8)	
35678 39	3013 2860 27.05 2527 2349	1927 1839 1767 1696 1610	1606 1527 1442 1357 1279	4676 ļµòĻ 4161. 3909 3717	4241 3998 3771 3519 3314	666 666 666 666 666	16129 15294 14512 13674 12935	
ELETEE	2171 2016 1815 1633 1430	1522 $1\sqrt{22}$ 1322 1222 1134	1211 1150 1098 1055 1013	3509 3303 3113 2947 2800	3131 2941 2797 2640 2485	666 666 666 666 666	12210 11498 10811 10163 9528	
444449	1225 1023 867 741 664	1022 919 805 689 575	961 909 849 789 730	2672 2567 2464 2339 2212	2342 2218 2107 2011 1932	666 666 666 666 666	8888 8302 7758 7235 6779	
555554	588 524 435 408 383	488 417 374 331 295	677 610 549 481 412	2066 1921 1776 1648 1485	1854 1760 1664 1555 1446	666 666 666 666 666	6339 5898 5464 5089 4687	
5555589	363 346 326 309 291	245 229 215 20 ₄ 195	344 291 249 223 198	1335 1170 1002 836 709	1336 1240 1117 1005 880	666 666 666 666 666	4239 3942 3575 3243 2939	
60 61 62 $6\overline{3}$ $6\overline{4}$	274 254 237 220 203	183 174 164 $\frac{151}{143}$	176 146 137 129 122	606 543 481 129 428 356	754 629 534 456 409	666 666 666 666 666	2659 2412 2219 2053 1899	
666789	185 163 143 121 79	133 124 114 104 92	116 110 104 98 92	333 313 293 283 267	362 322 268 251 236	666 666 666 666 666	1795 1698 1592 1523 1432	

Table 13. Continued

$\overline{2}$ hr per $\boxed{1}$	Period one (2)	Period two (3)	Period four <u>(4)</u>	Period five (5)	Period six (6)	Base flow (7)	Total flow (8)
70 772 773 71	42 0	818440	85 $8\overline{0}$ 748 62	253 238 208 208 194	223 213 201 190 179	666 666 666 666 666	1350 1265 1209 1156 1101
776789			55811714	180 166 152 133 117	169 1576 1465 1355	666 666 666 666 666	1070 1037 1005 961 922
80 $\frac{81}{82}$ $\frac{8}{8}$ ³			\circ	00400	$11\frac{1}{4}$ $\frac{100}{88}$ 749	666 666 666 666 666	879 831 788 740 715
85 86					$\frac{26}{0}$	666 666	692 666

Table 13. Continued

storm, the **ordinates** of the two stream hydrographs **were** added with respect to time to produce a total hydrograph at the junction of the two streams. Tables 14 through 18 in the Appendix list the ordinate values determined for the stream and total hydrographs for each of the **five** storms. The three hydrographs determined for each storm are plotted in Figures 18 through 22.

Figure 17. Development of the Skunk River hydrograph at the Squaw Creek junction for Storm MR 7-2B

Figure 18. Hydrographs at the confluence of Skunk River
and Squaw Creek resulting from Storm MR $4-24$

59

bootontarbrokenbeza 30

Figure 19. Hydrographs at the confluence of Skunk River
and Squaw Creek resulting from Storm UMV 1-22

Figure 20. Hydrographs at the confluence of Skunk River
and Squaw Creek resulting from Storm UMV 2-5

 $61\,$

Figure 21. Hydrographs at the confluence of Skunk River
and Squaw Creek resulting from Storm MR 7-2B

 $-1 - 1 - 1$

Figure 22. Hydrographs at the confluence of Skunk River
and Squaw Creek resulting from Storm MR 6-15

IV. RESULTS

Tables 1μ through 18 in the Appendix and Figures 18 through 22 were used to compare runoff resulting from the five storms considered. The peak discharges on the Skunk River resulting from each of the five storms are as follows:

The length of time that flood stage, 3490 cfs, would have been **exceeded** on the Skunk River for each of the storms is as follows:

The peak discharges on Squaw Creek resulting from **the** five storms are as follows:

Flood stage, 3400 cfs, would have been exceeded on Squaw Creek for each of the five storms for the following periods of time:

The total peak discharges at the junction resulting from each of the five storms are as follows:

The length of time that flood stage, 2μ 00 cfs or larger, would have **been exceeded** below the junction for each of the (five storms is as follows:

Storm MR \downarrow -2 \downarrow produced the largest flood on both the Skunk River and on Squaw Creek. A comparison of the record flow in the Skunk River of $8,630$ cfs with the flow of 53,106
cfs shows how little of the flood potentiality of this river has been experienced to date.

It was determined that flows in excess of 3400 cfs cause the Squaw Creek to flood and that flows in the neighborhood of 6,000 cfs cause considerable flooding in several areas in the City of Ames. The transposition of Storm MR μ -2 μ produced a streamflow of 54,015 cfs in Squaw Creek which would undoubtedly cause great damage in the City of Ames.

The effect of valley storage in the two flood plains above the confluence has not been considered in this study. This storage would tend to reduce the peak of each flood. A stage-discharge relation has only been established for flows of less than 9,000 cfs in either channel. Any dependable prediction of the stage height that would **be** reached at the crest of the flood caused by each of the transposed storms would be impossible without a great deal more data than is available at this time.

www.manaraa.com

66

V. CONCLUSIONS

Although serious flooding has occurred from flow in the upper reaches of the Skunk River Basin, the flood potential of this region has by no means been realized. After transposition of **Storms** MR 4-24, UMV 1-22, UMV *2-5,* MR 7-2B, and MR 6-15 to this area, the following conclusions are drawn:

1. **The five** storms could have occurred over the Skunk River Basin with some adjustment in their relative magnitudes.

2. If Storm UMV *2-5* had occurred only 150 miles north**west** of its actual location in southeastern Iowa, and if Storm MR μ -2 μ had occurred only 150 miles southeast of its actual location in northwestern Iowa, the Skunk River could **have** experienced flood discharges of about *75,000* cfs and 107,000 cfs, respectively, below the confluence with Squaw Creek. Such discharges are approximately eight to twelve times greater than the present maximum discharge of 8700 cfs experienced in August 1954 . Flood discharges resulting from the other three storm transpositions are likewise in this general magnitude.

J. Flows produced in both the Skunk River and Squaw Creek near Ames were many times greater than any flows previously experienced in these streams during the period of record.

4. Floods of this magnitude would cause severe overflow above and below the confluence for a period of from three and

67

one half to five and one half days with associated high damage.

 \sim

VI. LITERATURE CITED

- 1. U. S. Army Corps of Engineers o **Review** report for flood control, Skunk River, Iowa. U.S. Army, Corps of Engineers, Rock Island District, Rock Island, Illinois. 1951.
- **2.** U.S. Geological Survey., Surface water supply of the United States. Volumes for 1919 through 1954 inclusive. Washington, D. C.
- 3. U. S. Army Corps of Engineers. Storm rainfall in the United States. U. S. Army, Office of the Chief of Engineers. Washington, D. C. 1954.
- 4. U.S. Weather Bureau. Climatological data. Iowa section. Volume 64, Number 6. June, 1953.
- 5. Climatological data. Iowa Section. Volumes 30 through 65. 1919-1954.
- 6. Wisler, C. O. and Brater, E. F. Hydrology. John Wiley & Sons, Inc. New York. 1949.
- 7. Spangler, M. G. Soil engineering. International Textbook Company. Scranton, Pennsylvania. 1951.
- 8. Linsley, R. K. Kohler, M. A., and Paulhus, J. L. Applied hydrology. McGraw-Hill. New York. 1949.
- 9. U.S. Department of the Army. Corps of Engineers. Hydro-
logic and.hydraulic analysis. Part 114, Chap. 5, $F1$ ood-hydrograph analysis and computations. $1948.$
- 10. U.S. Weather Bureau. Hydrometeorological report number 23. Washington, D.C. 1947.
- 11. Davis, D. C. Rainfall runoff relations for Iowa City above Iowa City, Iowa. U.S. Army, Corps of Engineers, Rock Island District, Rock Island, Illinois. 1949. (Mimeographed paper).

VII. ACKNOWLEDGMENTS

The author wishes to express appreciation for the following who generously assisted in the preparation of this thesis: Dr. E. R. Baumann, Associate Professor of Civil Engineering., Iowa State College., who gave suggestions regarding the improvement and organization of the work; Mrs. Mary Barron and Mr. Grant D. Hanson., Library Staff, Iowa State College, who gave advice regarding the form of the context; Mrs. Marilyn Wells, who typed all copies of the thesis; and to the individuals of those organizations who furnished.the data for and donated their time to the reviewing of this thesis.

APPENDIX

 \sim

Table 1μ . Hydrograph ordinates in cfs for Storm MR μ -2 μ

$2 - hr$ per.	Skunk River	Squaw Creek	Total flow	$2-hr$ per.	Skunk River	Squaw Creek	Total flow
0 l 2 <u>}</u>	333 333 333 333 811	333 259 390 708 1556	565 592 723 1041 2367	35 36 $\frac{37}{38}$ 39	15863 15119 14469 13870 13228	9736 8965 8292 7655 7065	25599 24094 22761 21525 20293
$\frac{5}{6}$ $\overline{6}$ 9	3575 8480 12913 17624 24852	3732 7787 14163 23647 33510	7307 16267 27076 41271 58362	ĻО 1 2 43 44	12606 11925 11210 10496 9811	6532 6048 5590 5168 4791	19138 17973 16800 15664 14602
10 11 12 $\begin{array}{c} 1 \, 3 \\ 1 \, 4 \end{array}$	36196 50440 150440 53106 53103	42093 48426 52843 54015 52397	78289 93931 103283 107121 105500	$rac{1}{45}$ 47 μ 8 49	9003 8244 7456 6606 5776	4437 4110 3819 3556 5300	13440 12354 11275 10162 9076
$\frac{15}{16}$ 17 18 19	52331 48929 45817 43065 40120	50001 46814 43243 39817 36808	102332 95743 89060 82882 76928	50 51 52 53 54	5064 4432 3947 3519 3167	3065 2860 2666 2483 2324	8129 7292 6613 6002 5491
20 21 22 $\frac{23}{24}$	37874 35615 33381 31489 29692	33668 3097.9 28554 26172 24083	71542 66594 61935 57661 53775	$\frac{55}{56}$ 575859	2773 2623 2466 2291 2205	2175 2013 1907 1787 1679	4948 4636 4373 4078 3884
$\frac{25}{26}$ 27 28 29	27974 26259 24766 23421 22043	22123 20362 18733 17163 15870	50097 46621 43499 40584 37913	60 61 62 63 64	2115 2037 1963 1888 1807	1589 1496 1424 1318 1286	با370 3533 3387 3206 3093
30 51232 3334	20890 19760 18618 17588 16721	14626 13438 12422 11438 10550	35516 33198 31049 29026 27271	65 67 68 69	1734 1661 1586 1514 1426	1213 1162 1104 1056 1011	2947 2823 2690 2570 2437

 $\ddot{}$

Table 14. Continued

Table 15. Hydrograph ordinates in cfs for Storm UMV 1-22

2-hr per.	Skunk River	Squaw Creek	Total flow	$2 - hr$ per.	Skunk River	Squaw Creek	Total flow
70 71 72 7^{3}_{7}	3304 3072 2842 2639 2458	2091 1957 1844 1730 1637	5395 5029 4686 4369 4095	98 99 100 101 102	688 681 675 668 668	524 60L 589 576 569	1312 1285 1264 1244 1237
75 75 $^{77}_{78}$ 79	2296 2138 2018 1904 1791	1534 1460 1373 1307 1240	3830 3598 3391 3211 3031	103 104 105 106 107	667 666 666 666 666	563 562 558 553 549	1230 1228 1224 1219 1215
80 81 82 $\frac{83}{84}$	1701 1598 1504 1412 1288	1178 1124 1063 1017 985	2879 2722 2567 2429 2273	108 109 110 111 112	666 666 666 666 666	533 518 503 496 488	1199 1184 1169 1162 1154
$\frac{85}{86}$ 87 88 89	1174 1054 994 938 881	941 899 861 828 797	2115 1953 1855 1766 1678	113 114 115 116 117	666 666 666 666 666	481 481 480 480 478	1147 1147 1146 1146 1144
90 91 92 93 94	859 838 818 790 766	76կ 747 732 720 708	1623 1585 1550 1510 1474	118 119 120 121 122	666 666 666 666 666	476 ⊥7և 471 469 467	1142 1140 1137 1135 1133
95 96 97	739 720 705	699 676 649	1438 1396 1354	123 124 125	666 666 666	466 465 464	1132 1131 1130

Table 15. Continued

75

Table 16. Hydrograph ordinates in cfs for Storm UMV 2-5

$2-hr$ per.	Skunk River	Squaw <u>Creek</u>	Total flow	2-hr per.	Skunk River	Squaw \mathtt{Creek}	Total flow
\circ 1234	333 710 2884 6745 10204	232 420 1334 3594 7628	565 1130 4218 10339 17832	35 36 57 38 39	10474 9992 9527 9014 8478	4970 4600 4264 3963 3675	15444 14592 13791 12977 12153
$\frac{5}{6}$ $\begin{array}{c} 7 \\ 8 \\ 9 \end{array}$	13782 19230 27972 35142 38685	14062 20822 26709 31003 33905	27844 40052 54681 66145 72590	ĻО 1 2] 44	7938 7431 6823 6253 5658	3411 3175 2952 2748 2567	11349 10606 9775 9001 8225
10 11 12 13 14	40282 39860 39062 36367 34005	34559 33337 31634 29493 27205	74841 73197 70696 65860 61210	45 46 រ្នំ 7 រុំ 49	5020 4401 3872 3408 3060	2402 2241 2092 1965 1844	7422 6642 5964 5373 4904
$\frac{15}{16}$ $^{17}_{18}$ 19	31977 29750 28088 26L13 24814	25028 23130 21165 19500 18002	57005 52880 49253 45913 42816	50 51 - 52 52 54 54	2752 2496 2228 2100 1989	1731 1630 1537 1432 1368	4483 4126 3765 3532 3357
20 21 22 $\frac{23}{24}$	23463 22167 20910 19619 18520	16547 15250 14031 12930 11907	40010 37417 34941 32549 30427	556758 59	1867 1804 1738 1682 1627	1292 1225 1170 1110 1066	3159 3029 2908 2792 2693
$\frac{25}{26}$ $\frac{27}{28}$ 29	17528 16472 15650 14816 13977	10919 10117 9331 8593 7956	28447 26589 24981 23409 21933	60 61 62 63 64	1571 1511 1457 1402 1346	1010 979 932 992 865	2581 2490 2389 2304 2211
30 33334	13245 12566 ----- 11938 11383 10917	7338 6782 6273 5789 5369	20583 19348 18211 17172 16286	65 67 69	1292 1227 1167 1101 987	835 805 771 748 741	2127 2032 1938 1849 1728

 ϵ

 $\big($

Table 16. Continued

$2 - hr$ per.	Skunk River	Squaw Creek	Total flow	$2 - hr$ per.	Skunk River	Squaw \mathtt{Creek}	Total flow
O l 2 م 4	333 498 1454 3151 4702	232 313 709 1687 3447	565 811 2163 4838 8149	35 36 37 38 39	16129 15294 14512 13674 12935	14312 13177 12103 11195 10318	30411 28471 26615 24869 23253
56 $\overline{6}$ 9	6450 9156 13272 16646 18531	6297 9383 12219 14514 16204	12747 18539 25491 31160 34735	ĻО 41 42 ij3 Щ	12210 11498 10811 10163 9528	9496 8786 8101 7483 6920	21706 20284 18912 17646 16448
10 11 12 $13 \over 14$	19891 20528 20916 20268 20213	16875 16746 16635 16742 17703	36766 37274 37551 37010 37916	45 46 47 μ ⁸ 49	8888 8302 7758 7235 6779	6387 5913 5471 5063 4689	15275 14215 13229 12298 11468
$\frac{15}{16}$ 17 18 19	21188 22443 24102 560µ0 28647	19573 22429 26424 30644 34178	40761 44872 50526 56684 62825	50 51 52 53 54	6339 5898 5464 5089 4687	4350 4032 3739 3472 3231	10689 9930 9203 8561 7918
20 21 22 $\frac{23}{24}$	30520 31453 32057 31880 31091	36714 38394 38073 37046 35209	67234 69847 70130 68926 66300	55 56 57 58 59	4289 3942 3575 3243 2939	3004 2799 2617 2439 2280	7293 6741 6192 5682 5219
$\frac{25}{26}$ 27 28 29	29237 27294 25750 24951 22699	32881 30322 27896 25705 23569	62118 57616 53646 49756 46268	60 61 62 63 64	2659 2412 2219 2053 1899	2135 2005 1872 1765 1660	4794 4417 4091 3818 3559
3012334	21392 20144 19026 17994 17051	21680 19985 18346 16880 15528	43072 40129 37372 34874 32579	65 66 67 68 69	1795 1698 1592 1523 1432	1554 1477 1390 1315 1255	3349 3175 2982 2838 2687

Table 17. Hydrograph ordinates in cfs for Storm MR 7-2B

$2 - hr$ per.	Skunk River	Squaw Creek	Total flow	$\overline{2-\text{hr}}$ per.	Skunk River	Squaw Creek	Total flow
70 71 72 7^{3}_{7}	1350 1265 1209 1156 1101	1192 1136 1078 1034 985	2542 2401 2287 2190 2086	91 92 93 94 95	666 666 666 666 666	609 60Ų 585 565 548	1275 1270 1251 1231 1214
$^{75}_{76}$ $^{77}_{78}$ 79	1070 1037 1005 961 922	943 907 877 852 819	2013 1944 1882 1813 174 $\overline{1}$	96 97 98 99 100	666 666 666 666 666	536 523 515 512 510	1202 1189 1181 1178 1176
80 81 82 $\frac{8}{8}$	879 831 788 740 715	797 775 744 713 688	1676 1606 1532 1453 1403	101 102 103 104 105	666 666 666 666 666	510 $\frac{507}{504}$ 501 492	1176 1173 1170 1167 1158
85 86 $\frac{87}{88}$ 89	692 666 666 666 666	667 650 632 626 622	1359 1316 1298 1292 1288	106 107 108 109 110	666 666 666 666 666	484 Į7δ 472 468 464	1150 1142 1138 1134 1130
90	666	613	1279				

Table 17. Continued

$2 - hr$ per.	Skunk River	Squaw Creek	Total flow	$2-hr$ per.	Skunk River	Squaw \texttt{Treek}	Total flow
O 1234	333 350 451 630 1229	232 255 366 640 1350	565 605 817 1270 2579	35 36 $\frac{37}{38}$ 39	10200 9765 9403 9945 8614	6022 5558 5158 4775 4425	16222 15323 14561 13820 13039
56789	3929 8683 12963 16505 21324	3205 6678 12074 19848 27393	7134 15361 25037 36353 48717	ĻО 4ı 42 43 44	8177 7681 7181 6683 6243	4099 3813 3536 3284 3056	12276 11494 10717 9967 9299
10 11 12 13 14	30110 37242 39573 380 27 34736	33073 35938 37127 36067 33530	63183 73180 76700 74094 68266	45 46 47 48 49	5683 5170 4607 1042 3489	2845 2649 2476 2322 2167	8528 7819 7083 6364 5656
$\frac{15}{16}$ $\begin{array}{c} 17 \\ 18 \end{array}$ 19	32836 30141 28521 26768 25096	30895 28383 26099 ذِ 240 22248	63731 58524 54620 50781 47344	5012314	3062 2716 2501 2292 2116	2021 1899 1785 1676 1581	5083 1615 4286 3968 3697
20 21 22 $\frac{23}{24}$	23695 22331 20982 19822 18723	20334 18740 17248 15864 14602	44029 41071 38230 35686 33325	5565789	1874 1799 1731 1677 1628	1491 1386 1328 1255 1198	3365 3185 3059 2932 2826
$\frac{25}{26}$ 27 28 29	17701 16564 15641 14816 13959	13431 12385 11408 10452 9698	31132 28949 27049 25268 23657	60 61 62 63 64	1573 1524 1476 1427 1372	1140 1085 1043 988 961	2713 2609 2519 2415 2333
30 31 32 33 34	13303 12596 11899 11258 10698	8947 8255 7635 7040 7040 6512	22250 20851 19534 18298 17210	65 66 67 68 69	1324 1275 1226 1178 1113	913 887 846 822 791	2237 2162 2072 2000 1904

Table 18. Hydrograph ordinates in cfs for Storm MR 6-15

 $\ddot{}$

Table 18. Continued

 \sim